

A menagerie of approaches to ice sheet-ocean coupling, with a slight emphasis on US Department of Energy models

Xylar Asay-Davis¹, Darren Engwirda², Matthew Hoffman¹, Mark Petersen¹, Steve Price¹, Philip Wolfram¹

¹Los Alamos National Laboratory ²Columbia University

Outline

- Considerations for ice sheet-ocean coupling
 - Coupling
 - Ice-sheet component
 - Ocean component
- Initializing coupled models
- Comparing models (MISOMIP)
- US Department of Energy models:
 - POPSICLES
 - E3SM
- Effects of climate biases on ice-sheet forcing

Considerations in ice sheet-ocean coupling

- Coupling:
 - "Offline" coupling (with restart files)
 - "Online" coupling
 - ESM couplers
 - Dynamic component masking
 - Melting in grounded vs. floating cells

A snapshot from a coupled, circum-Antarctic simulation from POPSICLES (Asay-Davis et al. 2017).

Considerations in ice sheet-ocean coupling

- Coupling:
 - "Offline" coupling (with restart files)
 - "Online" coupling
 - ESM couplers
 - Dynamic component masking
 - Melting in grounded vs. floating cells
- In the ocean component:
 - Moving boundaries
 - Grounding lines
 - Calving fronts
 - Ice shelf thinning/thickening
 - Connectivity in the ocean
 - Pressure-gradient errors
 - The ice-ocean boundary layer

A snapshot from a coupled, circum-Antarctic simulation from POPSICLES (Asay-Davis et al. 2017).

"Offline" vs. "online" coupling

Offline

- Modify restart files
- Reinitialize ocean geometry at each coupling interval
- Pros:
 - Typically easier to implement
 - Simple solution to "wetting-and-drying" problem:
 extrapolation
 - Can use existing (offline) infrastructure for ocean model initialization
- Cons:
 - × Typically not conservative (or conservation is a hack)
 - × Unphysical extrapolation procedure
 - × Clumsy starting and stopping on HPC

"Offline" vs. "online" coupling

Online

- "Coupler" communicates fields between components
- Ocean updates ice-shelf geometry every time step or coupling interval
- Pros:
 - ✓ Conservation
 - Fluid is pushed out or sucked in as boundary moves, consistent with physics
 - ESM coupling infrastructure can be used

Cons:

 Moving boundaries, wetting-and-drying are hard to implement

Remeshing as part of online ("synchronous") coupling in the MITgcm ice sheet-ocean model (Jordan et al. 2018)

Coupled ice sheet-ocean models (partial list)

Model	Citation/Notes
Offline-coupled	
Goldberg et al. model	<u>Goldberg et al. (2012)</u>
POPSICLES (POP-BISICLES)	
MITgcm-Úa	De Rydt and Gudmundsson (2017)
ISSM-MITgcm	Seroussi et al. (2017)
BISICLES-NEMO	In UKESM1
FESOM/Rimbay	Timmermann and Goeller (2017)
Elmer/Ice-NEMO	
Online-coupled	
MOM6-CISM	
Elmer/Ice-ROMS	
MITgcm (ocean and ice sheet)	<u>Goldberg et al. (2018), Jordan et</u> <u>al. (2018)</u>
MPAS-O/MALI	In progress for E3SM v3
ROMS-icepack	In progress

A snapshot of ocean temperature and ice velocity from a coupled, circum-Antarctic simulation from POPSICLES.

ESM couplers: CIME

- Common Infrastructure for Modeling the Earth (<u>CIME</u>)
 - Used and jointly developed by Energy Exascale Earth System Model (<u>E3SM</u>) and the Community Earth System Model (<u>CESM</u>)

Melt rates computed within the E3SM ocean component (top) and from the CIME coupler (bottom)

ESM couplers: CIME

- Common Infrastructure for Modeling the Earth (<u>CIME</u>)
 - Used and jointly developed by Energy Exascale Earth System Model (<u>E3SM</u>) and the Community Earth System Model (<u>CESM</u>)
 - Boundary fluxes (melt rates, heat fluxes) appropriate for full coupling
 - These fluxes are computed
 - On ice-sheet grid (higher spatial res)
 - At ocean coupling frequency (higher temporal res)
 - Allows masking of melt rates based on flotation on ice-sheet grid
 - Coupling with dynamic geometry under development

Melt rates computed within the E3SM ocean component (top) and from the CIME coupler (bottom)

ESM couplers: FISOC and UKESM1

- <u>FISOC</u>: Framework for Ice Sheet Ocean Coupling
 - Developed by Rupert Gladstone
 - Based on Earth System Modeling Framework (<u>ESMF</u>)
 - Used to couple ROMS to both Elmer/Ice and icepack

Flow chart of the FISOC coupler

ESM couplers: FISOC and UKESM1

- <u>FISOC</u>: Framework for Ice Sheet Ocean Coupling
 - Developed by Rupert Gladstone
 - Based on Earth System Modeling Framework (<u>ESMF</u>)
 - Used to couple ROMS to both Elmer/Ice and icepack
- UKESM1 (Seller et al. 2020)
 - BISICLES-NEMO coupling developed by Robin Smith
 - Offline coupling
 - NEMO geometry updated each
 "checkpoint" (every month or year)

Flow chart of the FISOC coupler

Freshwater fluxes

Dynamic masking between components

- Interpolation weights between ESM components are precomputed on overlap ("exchange") grid
- Weights typically assume a fixed mask for exchange
- Moving calving fronts and grounding lines require dynamic masks
- Affects many component pairs:
 - Atmosphere-ice sheet
 - Atmosphere-ocean
 - Atmosphere-sea ice
 - Ice sheet-land
 - Ice sheet-ocean
 - Ocean-sea ice

Example of overlap ("exchange") grid between ESM components (Fischer et al. 2014)

Melting only in floating cells

- Typically, ocean model computes melting
- Melt rates remapped to ice-sheet mesh
- Remapping should account for floating vs. grounded ice-sheet cells
- No melting under grounded ice!
- Considerations:
 - Likely easier to enforce if melt is computed on ice-sheet grid
 - Ice sheet mesh is often higher resolution

Ullrich et al. (2009)

Melting only in floating cells

- Typically, ocean model computes melting
- Melt rates remapped to ice-sheet mesh
- Remapping should account for floating vs. grounded ice-sheet cells
- No melting under grounded ice!
- Considerations:
 - Likely easier to enforce if melt is computed on ice-sheet grid
 - Ice sheet mesh is often higher resolution

Ullrich et al. (2009)

Considerations for the Ocean Component

Moving boundaries: thinning/thickening of the ice

- Ocean models designed for small changes in water column (dynamic sea surface height)
- Not prepared for ice shelves over the ocean, or thickness changes

Coupled MITgcm-Úa evolution (De Rydt and Gudmundsson, 2017)

Moving boundaries: thinning/thickening of the ice

- Ocean models designed for small changes in water column (dynamic sea surface height)
- Not prepared for ice shelves over the ocean, or thickness changes

- Ice-shelf cavities must be added:
 - Top index in the model (z-level models)
 - Depress the sea surface (terrain following or layered models)
- Then, surface geometry must be allowed to change ("online" or "offline")

Coupled MITgcm-Úa evolution (De Rydt and Gudmundsson, 2017)

Moving boundaries: the grounding line

Approaches:

- Expand and contract the ocean domain as the GL moves (e.g. <u>De Rydt and</u> <u>Gudmundsson, 2017</u>)
- Extrapolate ocean properties

Coupled MITgcm-Úa evolution (De Rydt and Gudmundsson, 2017)

Moving boundaries: the grounding line

Approaches:

- Expand and contract the ocean domain as the GL moves (e.g. <u>De Rydt and</u> <u>Gudmundsson, 2017</u>)
- Extrapolate ocean properties

Or:

- Place a thin film of ocean under grounded ice that could unground (e.g. <u>Goldberg et al. 2018</u>)
- Like "wetting and drying" for tidal estuaries

Moving boundaries: the calving front

- Calving front can be:
 - A cliff (z-level models)
 - A smoothed slope (terrain following or layered models)

Ocean temperature and vertical coordinate in three ocean models (Gwyther et al., Ocean Modelling, accepted).

Moving boundaries: the calving front

- Calving front can be:
 - A cliff (z-level models)
 - A smoothed slope (terrain following or layered models)
- Some models support abrupt calving

- Others support only continuous calving
- For smoothed calving fronts, typically calving treated as vertical thinning

POPSICLES simulation with dynamic calving (Asay-Davis et al. 2016).

Connectivity in the ocean

- Inclusion of disconnected lakes can cause:
 - Numerical errors
 - Unwanted melting
- Some models "Flood fill" to ensure connectivity

- GL retreat can connect subglacial lakes to the ocean (<u>De Rydt and</u> <u>Gudmundsson, 2017</u>)
- Potentially leads to rapid thinning and retreat

Coupled MITgcm-Úa evolution (De Rydt and Gudmundsson, 2017)

- Terrain-following and some layered models prone to significant pressure-gradient errors
- Without special treatment, thin layers with steep slopes lead to spurious flow

- Terrain-following and some layered models prone to significant pressure-gradient errors
- Without special treatment, thin layers with steep slopes lead to spurious flow
- Measured by the Haney Number
- Large values lead to numerical instability

- Terrain-following and some layered models prone to significant pressure-gradient errors
- Without special treatment, thin layers with steep slopes lead to spurious flow
- Measured by the Haney Number
- Large values lead to numerical instability
- How large is too large depends on the implementation of the horizontal pressure gradient.

- Terrain-following and some layered models prone to significant pressure-gradient errors
- Without special treatment, thin layers with steep slopes lead to spurious flow
- Measured by the Haney Number
- Large values lead to numerical instability
- How large is too large depends on the implementation of the horizontal pressure gradient.

- Terrain-following and some layered models prone to significant pressure-gradient errors
- Without special treatment, thin layers with steep slopes lead to spurious flow
- Measured by the Haney Number
- Large values lead to numerical instability
- How large is too large depends on the implementation of the horizontal pressure gradient.

- Terrain-following and some layered models prone to significant pressure-gradient errors
- Without special treatment, thin layers with steep slopes lead to spurious flow
- Measured by the Haney Number
- Large values lead to numerical instability
- How large is too large depends on the implementation of the horizontal pressure gradient.

Ice-ocean boundary layer physics

- "3 equation" approach (originally developed for sea ice) generally used for coupling of heat and freshwater flux in ice/ocean BL
- Can we improve on this? Are our ocean model simulations good enough to warrant the effort? Are there adequate & appropriate observations?

Right: Cross-section of ocean potential temperature from a large-eddy simulation below a dynamically melting ice shelf with a slope of 0.1 degrees in the horizontal-direction (C.B. Begeman, LANL).

Initializing coupled ice-ocean models

Idealized: typically start from no melt

- Examples:
 - Goldberg et al. (2012)
 - MISOMIP1
- Ice sheet can spin up to steady state (10³ to 10⁴ years)

- Ocean
 - Starts from rest
 - "Cold" I.C. → low melt, weak "shock"
 - "Warm" I.C. → rapid melt increase, strong "shock"

POPSICLES simulation starting from dynamic calving (Asay-Davis et al. 2016).

Realistic: Spin up ocean component

- Constant geometry from
 - Observations (e.g. BedMachine) or
 - Ice sheet initial condition (maybe also BedMachine)
- Start at rest
- Temperature and salinity from climatology
- Extrapolated (somehow) under ice shelves
- Run for ~5-30 years (depending on what you can afford)
- Tuning to improve melt rates?

The vertically averaged ocean speed in a POPSICLES simulation

Realistic: ice-sheet initialization

- Spin-up
- Data assimilation
- (What we've discussed in the workshop so far)
- Constant (or variable) melt rates from
 - Ocean spin-up
 - Observations
- Upon coupling, potential shocks:
 - If ocean geometry abruptly changes
 - If melt rate abruptly changes

The ice speed in a POPSICLES simulation

Comparing models: Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP)

MISOMIP1 experiments

Bedrock topography for the MISOMIP1 experiments (also MISMIP+ and ISOMIP+), with steep a trough and a region of "reverse-sloped" bed (Asay-Davis et al. 2016)

MISOMIP1 experiments

Ocean temperature from POPSICLES MISOMIP1 simulations without calving (top) and with calving (bottom) at 0, 50, 100 and 200 years (Asay-Davis et al. 2016).

MISOMIP1 experiments

Mean melt rates and grounded area vs. time from POPSICLES MISOMIP1 simulations (Asay-Davis et al. 2016) without calving (blue) and with calving (green).

Models participating in MISOMIP1

Model	Citation/Notes
Offline-coupled	
Goldberg et al. model	<u>Goldberg et al. (2012)</u>
POPSICLES (POP-BISICLES)	
MITgcm-Úa	De Rydt and Gudmundsson (2017)
ISSM-MITgcm	Seroussi et al. (2017)
BISICLES-NEMO	In UKESM1
FESOM/Rimbay	Timmermann and Goeller (2017)
Elmer/Ice-NEMO	
Online-coupled	
MOM6-CISM	
Elmer/Ice-ROMS	
MITgcm (ocean and ice sheet)	<u>Goldberg et al. (2018), Jordan et</u> <u>al. (2018)</u>
MPAS-O/MALI	In progress for E3SM v3
ROMS-icepack	In progress

Ocean temperature from POPSICLES MISOMIP1 simulations without calving (top) and with calving (bottom) at 100 and 200 years (Asay-Davis et al. 2016).

Plans for MISOMIP2

- Realistic forcing and model geometries
- Regional Foci:
 - Amundsen Sea
 - Weddell Sea
- Simulations:
 - Standalone ocean
 - Standalone ice sheet
 - Coupled ice sheet-ocean
- Simulation time frame:
 - 1990-2020
- Topography and Forcing:
 - "Come as you are"

Weddell Sea regional domain (Naughten et al. 2019)

US Department of Energy (DOE) models

POPSICLES

Pan-Antarctic coupled ice sheet-ocean model Components:

- Parallel Ocean Program (POP)
- BISICLES Ice-Sheet Model
- Offline coupling
- High resolution to resolve largest ocean eddies and grounding-line dynamics
 - ocean: 0.1° (~5-10 km)
 - ice-sheet: 500 m (adaptive)

Energy Exascale Earth System Model (E3SM)

- Variable-resolution components (atmosphere, land, ocean, sea-ice, and ice-sheet)
- Focused on interactions between the climate system and the energy sectors
- Cryosphere science focus: projections of Antarctic sea-level change

Model for Prediction Across Scales – Ocean (MPAS-O)

- Unstructured horizontal grid
- Voronoi cells
- Finite volume
- Ice-shelf cavities:
 - Terrain-following top coordinate
 - Smoothed calving front
- Cryosphere Configuration:
 - Static ice-shelf cavities (Bedmap2)
 - Two horizontal resolutions in Southern Ocean and Antarctic continental shelf:
 - ~30 km ("low res.")
 - ~10 km ("mid res.")
 - Plans for ~5-6 km ("high res.") focused on Antarctic

MPAS-Albany Land Ice (MALI) model

- Discussed by Steve, Mauro and Irina
- Unstructured
- Finite element velocity solver
- Finite volume thickness/temperature evolution

Thwaites regional domain (Hoffman et al. 2019)

ABUMIP simulations

Ice sheet-ocean boundary fluxes

- Heat and melt fluxes are computed in the coupler
- From the ice sheet:
 - Bottom-layer temperature and thickness
- From the ocean (all vary horizontally):
 - Boundary-layer temperature and salinity (averaged over top 10 m)
 - Heat- and salt-transfer coefficients
 - Effective ocean density for flotation
- "Three-equation" boundary conditions
 - Melt rate (freshwater flux)
 - Heat flux
 - Interface temperature and salinity

Ocean temperature and vertical coordinate in three ocean models (Gwyther et al., Ocean Modelling, accepted). Simulations are based on ISOMIP+ experiments under the MISOMIP project.

Ice sheet-ocean boundary fluxes

- Boundary-layer (BL) temperature and salinity averaged over top 10 m
- Heat and freshwater fluxes distributed with a 10-m length scale
- Leads to nearly resolutionindependent results
- But(!!) 10 m is completely arbitrary
 - Better understanding of transition from unresolved to resolved BL turbulence needed
 - DNS, LES, lab experiments underway, but more is needed
 - Look for review by Malyarenko et al. (under review in Ocean Modelling)

Mean melt rate vs. model resolution in MPAS-O (Gwyther et al., Ocean Modelling, accepted).

- Adding higher-order horizontal pressure gradient to MPAS-O (<u>Adcroft</u> <u>et al. 2008</u>)
- Adapting wetting-and-drying scheme already in use for coastal modeling
- Thin film approach (everywhere with grounded marine ice)
- Melt rates computed in coupler (as previously discussed)
- Prescribed dynamic ice-shelf geometry already supported

- Adding higher-order horizontal pressure gradient to MPAS-O (<u>Adcroft</u> <u>et al. 2008</u>)
- Adapting wetting-and-drying scheme already in use for coastal modeling
- Thin film approach (everywhere with grounded marine ice)
- Melt rates computed in coupler (as previously discussed)
- Prescribed dynamic ice-shelf geometry already supported

- Adding higher-order horizontal pressure gradient to MPAS-O (<u>Adcroft</u> <u>et al. 2008</u>)
- Adapting wetting-and-drying scheme already in use for coastal modeling
- Thin film approach (everywhere with grounded marine ice)
- Melt rates computed in coupler (as previously discussed)
- Prescribed dynamic ice-shelf geometry already supported

- Adding higher-order horizontal pressure gradient to MPAS-O (<u>Adcroft</u> <u>et al. 2008</u>)
- Adapting wetting-and-drying scheme already in use for coastal modeling
- Thin film approach (everywhere with grounded marine ice)
- Melt rates computed in coupler (as previously discussed)
- Prescribed dynamic ice-shelf geometry already supported

Effects of climate biases on ice-sheet forcing

POPSICLES Simulations

POPSICLES Simulations

Cross-section of potential temperature through the Amundsen Sea Embayment (105°W)

latitude

E3SM Simulations

(blue and green boxes are estimates from Rignot et al., 2011)

